
Math 138 – Practice midterm Name:

Math 138 – Practice midterm
Due date: October 15, 2025

Instructions:

• You have 2 hours to complete this exam.

• No external resources are allowed.

• Upload your completed practice midterm to Crowdmark.

Word of advice: While not 100%, we can likely tell if you use AI on this exam. Ultimately
the grade on the practice midterm is completion based. To cheat on this will likely not result
in a higher score on the practice midterm, but will almost certainly result in a lower score on
the actual exam. Similarly, the two hour limit is not enforceable, but you should still follow
it as it will help you get a better sense of your preparedness for the actual exam.
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Question 1. (15 pts)

Spot the error in the following proof, and explain why it is wrong.

Proposition. Every function f : {1, . . . , n} → {1, . . . , n} has a fixed point (i.e., for some x
one has f(x) = x).

Proof. We prove this by induction on n. When n = 1 the only function f : {1} → {1}
satisfies f(1) = 1, so has a fixed point. For the induciton hypothesis, assume the claim is
true for any function g : {1, . . . , n} → {1, . . . , n}, and consider a function

f : {1 . . . , n+ 1} → {1, . . . , n+ 1}.

Case 1: If f(n+ 1) = n+ 1 we’re done.

Case 2: If f(n+1) ̸= n+1, we can consider the function g : {1, . . . , n} → {1, . . . , n} given by
f(i) = g(i). By induction hypothesis there is some x ∈ {1, . . . , n} such that x = g(x) = f(x).

Thus, in either case we see f has a fixed point as desired.

Solution: The error is in the induction hypothesis, specifically in Case 2. Namely, we defined
g to be a function from {1, . . . , n} to itself via the rule g(i) = f(i) for i ∈ {1, . . . , n}. But,
this is not necessarily well-defined as g(i) could be n + 1 for some i ∈ {1, . . . , n}. So, the
best we may do is define g as a function {1, . . . , n} → {1, . . . , n+1}, but then the induction
hypothesis does not apply to g.

Rubric:

• (2 pts) Explaining why the result is wrong.

• (3 pts) Identifying that the issue is with the induction hypothesis step.

• (5 pts) Explicating the exact point that is an issue.

• (5 pts) Giving a counterexample showing why this point is not correct.
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Question 2. (15 pts)

Let n ⩾ k ⩾ 0 be integers. Prove that(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Solution 1: We prove this by algebraic manipulation. Namely, it was established in class
that (

n

k

)
=

n!

k!(n− k)!
.

In particular, we aim to show that

n!

k!(n− k)!
=

(n− 1)!

k!(n− k − 1)!
+

(n− 1)!

(k − 1)!(n− k)!
. (1)

But, we may rewrite the terms on the right-hand side as

(n− 1)!

k!(n− k − 1)!
=

(n− 1)!(n− k)

k!(n− k)!

and
(n− 1)!

(k − 1)!(n− k)!
=

(n− 1)!k

k!(n− k)!
.

Thus, using these expressions, and multiplying through (1) by k!(n− k)! shows our desired
equation is equivalent to showing that

n! = (n− 1)!(n− k) + (n− 1)!k.

But, dividing both sides by (n− 1)! this reduces to showing that

n = (n− k) + k,

which is true. ■

Solution: Observe that the left-hand side is counting the number of ways of selecting k
numbers from a set of {1, . . . , n} elements. This is also what the right-hand side counts.
Indeed,

(
n−1
k

)
counts the number of ways of choosing the k things from {1, . . . , n} where

none of them are n (i.e., the number of ways of choosing k things from {1, . . . , n− 1}). But,(
n−1
k−1

)
then counts the number of ways of choosing k things from {1, . . . , n} where one of

those k things in n, as this amounts to exactly the number of ways choosing the remaining
k− 1 things from {1, . . . , n− 1}. Thus, the sum of these accounts exactly for the number of
ways of choosing k things from {1, . . . , n} as desired. ■

Rubric:

• (5 pts) Coherence in proof writing.

• (5 pts) Valid strategy (e.g., algebraic manipulation or counting).

• (5 pts) Executed strategy without errors.
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Question 3. (20 pts)

Suppose that x ∈ Q. Use the p-adic valuation to prove that if x
2
3 belongs to Q then x

1
3

belongs to Q.

Solution: By the result stated in class, x
1
3 belongs to Q if and only if sgn(x) = ±1 has a

third root in Q, and for all primes p one has 3 | vp(x). But, sgn(x) = ±1 always has a third
root in Q— 3

√
1 = 1 an 3

√
−1 = −1. So, it suffices to prove that 3 | vp(x) for all primes p.

But, by this same theorem we know that as x
2
3 = (x2)

1
3 is in Q, that 3 | vp(x2) for all primes

p. But, vp(x
2) = 2vp(x) as proven in class, so 3 | 2vp(x). As 2 and 3 are coprime this implies

that 3 | vp(x) for all primes p as desired. ■

Rubric:

• (5 pts) Coherence in proof writing.

• (3 pts) Correctly defining/using the p-adic valuation.

• (5 pts) Pursuing a correct strategy

(e.g. Recalling that x
1
3 is in Q if and only if 3 | vp(x) for all p, and sgn(x) has a cube

root.

• (2 pts) Correct identifying at some point that 2 and 3 being coprime was important.

• (5 pts) Correctly executing strategy.
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Question 4. 20 pts

Let A and B be subsets of a set S. Prove that

A△B = (A ∪B) ∩ (Ac ∪Bc).

Solution: Recall that A△B = (A−B) ∪ (B −A), i.e., those x such that x is in A or B but
not both.

Suppose first that x ∈ A△B. If x ∈ A then x /∈ B. So, if x ∈ A then x ∈ Bc, and so
x ∈ A ∪ B and x ∈ Ac ∪ Bc, so x ∈ (A ∪ B) ∩ (Ac ∪ Bc). The same argument applies by
symmetry if, instead, x ∈ B. Moreover, as x is in A or B this accounts for all cases. Thus,
we see that A△B ⊆ (A ∪B) ∩ (Ac ∪Bc).

Conversely, suppose that x ∈ (A ∪ B) ∩ (Ac ∪ Bc). Then, x belongs to A or B, and also x
belongs to Ac or Bc. If x belongs to A, then as it belongs also to one of Ac or Bc, and it can’t
belong to Ac by definition, it belongs to Bc. So, in that case x ∈ A ∩ Bc = A− B ⊆ A△B.
By symmetry, if x belongs to B then x belongs to A△B. So, (A ∪B) ∩ (Ac ∪Bc) ⊆ A△B.

As A△B ⊆ (A ∪B) ∩ (Ac ∪Bc) and (A ∪B) ∩ (Ac ∪Bc) ⊆ A△B, we deduce that A△B =
(A ∪B) ∩ (Ac ∪Bc), as desired. ■

Rubric:

• (5 pts) Coherence in proof writing.

• (3 pts) Correctly recalling/using the definition of △

• (2 pts) Giving a correct strategy of approach (i.e., show that each side contains the
other).

• (5 pts) Correctly arguing for left-hand side contained in right-hand side.

• (5 pts) Correctly arguing for right-hand side contained in left-hand side.
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Question 5. (30 pts)

Prove by induction that if Tn is the number of length n ⩾ 1 strings in the symbols 0, 1, 2
with exactly one 2 then

Tn = n · 2n−1

Solution: We proceed by induction.

Base case: When n = 1 we see that the only possible such strings in {0, 1, 2} of length one
containing exactly 2 are just the string 2 itself. So, T1 = 1 = 1 · 21−1.

Inductive hypothesis: Assume that Tn = n · 2n−1. Consider then a string of length n+ 1
in the symbols 0, 1, 2 with exactly one 2. We have two cases.

Case 1: The first digit is a 2. In this case the remaining n-length string can consist of any
string in {0, 1} of which there are 2n each choices (for each of the n places there are two
choices of 0 or 1).

Case 2: If the first digit is not a 2, then it is either a 0 or 1. In either case, the remaining
length n string can be any string in 0, 1, 2 with exactly one 2. By induction hypothesis this
is Tn = n · 2n−1. Thus, the total number of cases here is 2 · (n · 2n−1) = n · 2n.

As cases 1 and 2 are disjoint and account for all possibilities we see that

Tn+1 = 2n + n · 2n = (n+ 1)2n,

as desired.

Rubric:

• (5 pts) Coherence in proof writing.

• (5 pts) Correctly identifying the correct base step(s).

• (8 pts) Giving correct general structure for inductive hypothesis argument (e.g., ex-
plicating where the usage of exactly one two is important).

• (12 pts) Correctly executing proof of inductive hypothesis.
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